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Abstract

Demands on the performance of vehicle control and diagnostic systems are steadily
increasing as a consequence of stiff global competition and government mandates.
In the United States, light trucks and passenger cars are required both to meet strict
emission standards and to perform continuous diagnostics of all emissions systems
operating in the vehicle. These requirements will become more comprehensive and
difficult to achieve as emission standards arc tightened in the next decade. Neural
networks provide a means of creating control and diagnostic strategies that will
permit these challenges to be met efficiently and robustly. Accordingly, a collabo-
rative effort resulted in the development of a fast, low-cost custom ASIC capable
of executing in real-time promising neural architectures. Thk paper describes this
resulting VLSI design and the challenging application, misfire detection, that has
served as a focus for the effort.

1 Introduction

The control system of a modern automobile involves several interacting subsystems, almost any one of
which provides interesting theoretical and engineering challenges. Responsibility for many important
functions has shifted from mechanical control to computer control. Thk has resulted in a substantial
increase in fuel efficiency and, in combination with advances in catalyst technology, to a remarkable
reduction in emissions (99?10in a properly functioning system). This has been accomplished in
the context of an extremely cost competitive industry. Increasingly stringent emissions regulations
require that any malfunctioning component or system with the potential to undermine the emissions
control system to bc identified. Hence, cost effective ways of meeting these demands arc being
explored.

Neural networks have the potential for major impact in this work. Benefits may bc anticipated
in terms of the time required to design and calibrate a control or diagnostic strategy or in the
observed performance. In particular, we have been investigating the usc of neural networks as control
structures (Puskorius and Feldkamp, 1996a), models, virtual sensors, and for misfire diagnostics
(Puskorius and Feldkamp, 1996b, Feldkamp et al., 1996, Marko et al., 1996a,b,c). In most, cases,
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the computation performed by a neural network may be expected to exceed that of the strategy
that it replaces. Though this maybe justified by increased performance, a limit is set by processing
power that remains after other powertrain control functions are handled. Though we have been
able to execute neural networks for certain functions, such as idle speed control, directly in the
engine processor, we anticipated that a broad realization of neural network potential might require
specialized computational capability.

In the remainder of this paper we first provide a brief description of misfire detection, which is the
most computationally challenging vehicle application we have encountered. Then we dlscusssaspects
of using a recurrent neural network as a direct fault classifier for this problem. Final] y, we describe
the design requirements and constraints for VLSI to execute (not train) such networks and present
the results of a comparison of software and hardware calculations for vehicle data.

2 The Misfire Diagnostic Problem

In order to perform effectively on board a vehicle, diagnostic algorithms must be extremely accurate
and efficient. Detection of engine misfire is a particularly challenging problem, because the algorithm
must diagnose approximately one billion events over the life of each vehicle, and perform that task
between engine cylinder firhgs (which can occur at rates as high as 30,000 events per minute)
without disturbing the computations required to carry out the control strategy.

Engine misfire is known to cause significant increases in tailpipe emissions and therefore has come
under scrutiny as a major contributor to emissions problems which could be avoided through prompt
failure detection and fault isolation on board the vehicle. While there are many ways one might try to
diagnose engine misfire, the methods available today must rely on information from sensors already
in usc on production systems which have proven their accuracy and durability. This restriction limits
the practical methods of misfire diagnostics to analysis of the engine crankshaft dynamics, observed
with a crankshaft position sensor located at one end of the crankshaft. Basically, the strategy is to
attempt to detect an crankshaft acceleration deficit following a cylinder firhg and determine of that
deficit is attributable to a lack of power provided on the most recent firing stroke.

The problem of detecting the acceleration deficit is complicated by several factors: 1) the crankshaft
dynamics are influenced by unregulated inputs from the driver; 2) additional disturbances are in-
troduced through the driveshaft from irregularities in the road; 3) the dynamics are obscured by
meawmernent noise and process noise; 4) the diagnostics must run in real-time between engine Wing
events; and 5) the crankshaft is not infinitely stiff and exhibits complex dynamics which mask the
signature of the misfire event and which are influenced by the event itself. In effect, we are observ-
ing the torsional oscillations of a nonlinear oscillator with driving forces applied at several locations
along its main axis.

Figure la illustrates cylinder-by-cylinder crankshaft accelerations, taken when the engine is at high
speed and lightly loaded. Acceleration deficits corresponding to misfire (here artificially induced)
are not easy to spot. The task is to infer from such observations whether the driving forces produced
by the engine combustion events correspond to normal combustion or engine misfire. While it is
straightforward to write down the dynamical equations that approximate the crankshaft rotational
dynamics as a function of the combustion pressures applied to the piston faces, it is quite difficult to
solve those equations and extremely difficult to solve the inverse inference problem associated with
misfire diagnostics. Nonetheless, the expectation of a discoverable dynamic relationship between
the observed accelerations and the driving forces in this system, coupled with the absence of a
satisfactory alternative approach, prompted our exploration of recurrent networks as a solution to
the problem.

3 Time-Lagged Recurrent Networks

Recurrent networks with internal or external feedback have proven to be very useful as models or
controllers for dynamical systems. Here we use a recurrent multi-layer perception (RMLP), which
may be regarded as a combined generalization of a feedforward MLP and a one-layer fully recurrent
network. Such networks are rather general approximators of dynamical systems. We have explored
several ways of employing RMLPs for this problem; here we discuss their usc as a direct classifier.
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Figure 1: a) Temporal stream of acceleration values, illustrating the effects of crankshaft dynamics.
Misfires are denoted by symbols ‘x’. In the absence of torsional oscillations, the misfires would lie
clearly below Oon the vertical scale; b) Corresponding network outputs.

3.1 Network Architet ure

The results to be shown below made use of the network architecture 4-15 R-7R-1, i.e., 4 inputs,
two fully recurrent hidden layers with 15 and 7 nodes, respectively, and a single output node. The
activation function of each of the 23 computational nodes is a bipolar sigmoid. The network executes
once per cylinder event (e.g., 8 times per engine cycle for an 8-cylinder engine). The inputs at time
step k are the crankshaft acceleration (ACCEL, averaged over the last 90 degrees of crankshaft
rotation), engine load (LOAD, computed from the mass flow of air), the engine speed (RPM), and
a cylinder identification signal (CID, e.g., 1 for cylinder 1, 0 otherwise), which allows the network
to synchronize with the engine cylinder firing order. This network contains 469 weights; thus one
execution of the network requires 469 multiply-accumulate (MAC) operations and 23 evaluations of
the activation function. It is this computational load (187,000 MAC s– 1) that is impractical in an
already heavily loaded existing processor.

3.2 Training

Tkaining recurrent networks often poses practical difficulties, primary among which is dealing with
the recency effect, i.e., the tendency of a learning network to favor recent training examples at the
expense of those prcviousl y encountered. To mitigate this difficulty we devised the multi-stream
training technique (Feldkamp and Puskorius, 1994). This technique is especially effective in con-
junction when weight updates are performed using the extended Kalman filter method (Singhal and
Wu, 1989, Puskorius and Fcldkamp, 1994). Experiments suggest that the present results would not
easily have been obtained with the methods more commonly available.

The database used for network training was acquired by operating a test vehicle over as wide a range
of operation as practically possible, including engine speed-load combinations that would rarely bc
encountered in normal driving. Misfire events are deliberately introduced (typically by interrupting
the spark) at both regular and irregular intervals. A misfire alters the torsional oscillation pattern
for several subsequent time steps, so it is important to provide the network with a range of misfire
interval for all combinations of speed and load that correspond to positive engine torque. Though
in this case thc data used for training consists of more than 600,000 examples (one per cylinder
event ), it is clcarl y possible only to approximate complete coverage. Hence it is important to carry
out extensive generalization testing and analysis.
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Figure 2: Schematic representation of forward propagation module.

Figure lb shows the output of the trained RMLP for the acceleration data of Figure la. This data
segment was not used in training the network (it was acquired after the network had been trained,
thereby providing a modest test of network generalization), Though at present we have at our
disposal only one test vehicle with this particular powertrain configuration, earlier work with a pair
of test vehicles suggests that generalization among vehicles with nominally identical powertrains is
entirely feasible.

4 Neuroprocessor Chip

An ever increasing number of diagnostic and control applications are being solved for the first time
by the application of trainable neural classifiers of suitable capacity. These classifiers, however,
are based upon systems which require considerable computational resources and as such must be
implemented in dedicated silicon in order to meet the real-time computational requirements for both
on-board diagnostics and control.

The a priori design constraints set forth at the onset of this collaborative effort called for the
development of an inexpensive, fully autonomous, and commercially viable electronic chip.
This single chip implementation was required to (1) be extremely compact in size (because of the
mass market potential) (2) be flexible (so as to enable a number of different neural based applications
to share the hardware and sequentially execute on it), and (3) offer high computational resolution
(in order to avoid fixed-point induced arithmetic hardware diagnostic miscalls). By observing that
even at red line internal combustion events occur on a millisecond time scale, a novel and extremely
compact and powerful layer-multiplexed bit-serial neuromorphlc architecture was developed and
exploited so as to implement the recurrent ncuromorphic formalism in custom CMOS silicon. It is
this implementation that is discussed in the next sections along with a performance summary.

4.1 Architect ure

At its most elemental level, ncuromorphic computations can bc summarized as a series of parallel
multiply and accumulate operations interspersed by an occasional non-linear operation. In view of
the driving constraints outlined in the previous section, we fully exploited five basic techniques to
achieve our desired goals. These included usage of a (1) parallel intra-layer topology organized in a
(2) singleinstruction-multipledata (SIMD) architecture. This architecture made full usc of both (3)
bit-serial fixed-point computational techniques; and (4) inter-layer multiplexing of neuron resources.
Lastly (5) nonlincaritics were handled by the use of look-up-tables.

This resulting architecture is shown schematically in Figure 2 and consists of (1) a global controller;
(2) a pool of 16 bit-serial neurons; (3) a bipolar sigmoid activation ROM look-up-table; (4) neuron
state registers; and (5) a synaptic weight RAM. In this design, both inputs to the network as well as
ncuronal outputs are stored in the neuron state RAM. When triggered by the global controller, each
of the 16 neurons performs the neuronal multiply and accumulate (MAC) operation. They receive
as input the synaptic weights (from the synaptic weight RAM) and activations from either (a) input
nodes or (b) neurons on a previous layer in a bit serial fashion, and output the accumulated sum
of partial products onto a tri-st ated bus which is commonly shared by all 16 neurons. 13ecausc of
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Figure 3: Run-time forward propagation controller.

the computational nature of neural networks - where information is sequentially computed a layer
at a time - only enough neurons are physically implemented in silicon as exist on the layer with the
largest number of neurons for all applications of interest. As such, a candidate pool of 16 silicon
neurons was chosen. This means that the number of ‘keal” or non-recurrent neurons on any given
layer is bounded by [1, 16]. This intra-layer pool of neurons is organized in a SIMD configuration.
By singlc+instruction (S1) we mean that all active neurons in the pool execute the same instruction
at the same time. Multiple-data (MD) means that each active neuron acts on its own slice of data,
independently of all other processors. Together this means that at the intra-layer level, the chip
performs fully parallel computations under the control of the global controller.

A significant reduction in silicon real-estate was achieved by performing inter-layer multiplexing
of the 16 neuron pool. Inter-layer multiplexing refers to reusing the hardware used in calculating
the activations of neurons in one layer for the calculation of neurons in another layer. Since neu-
rocomputations are performed a layer at a time, this reuse of hardware is aimed at increasing the
utilization of the hardware that would otherwise remain idle. This r~utilization of hardware leads to
a significant reduction of the required VLSI real eatate. The general idea behind layer-multiplexing
is to reuse the circuitry dedicated to one layer during the evaluation of the next layer. In this way,
only enough hardware to accommodate the layer with the largest number of neurons needs to be
physically incorporated in hardware. Other smaller layers can then reuse portions of this hardware
during their evaluation.

Bit-serial algorithms for arithmetic operations are most suitable for efficient VLSI implementations
because of their canonical nature and minimal inetrconnection requirements. For this reason, we
made extensive use of bit-serial techniques to enable us to inwrporate onto a single compact chip a
complete stand-alone neuroprocessor.

4.2 Controller

At the heart of the neuroprocessors architecture is the global controller. The controller cent ains the
logic to enable the neurochip to execute its task. This task is to load an architecture from RAM, and
once trigerred, to generate all necessary control signals in addition to orchestrate data movement on-
tilp and off-chip. When there are no computations being performed, the global controller remains
in the idle state, signaling its availability by having the active low BUSY flag set high. When a
LOAD command is issued, the controller reads from RAM a neural network topology and goes into
an idle state. When the RUNTcommand is subsequently issued, the global controller is in charge
of providing control signals to the 16 on-tilp neurons, the RAM and the ROM in order to proceed
with the desired neurocomput ation. Input activations are read out of the 64x16 Neuron State RAM,
synaptic weights are read out of the 2Kx16 Synaptic Weight RAM, and both are propagated to the
bank of 16 neurons. In this way, the global controller keeps track of both intra-layer operations as
well as inter-layer operations. Upon completion of a forward pass through the network architecture,
the global controller asserts the BUSY flag and returns to the idle state.
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4.3 Neurons

Fixed-point bit-serial algorithms for operations such as addition and multiplication are uniquely
suitable for efficient VLSI implementations because of their highly compact representations. For
example, the size of an nxn bit multiplier scales quadratically (O(n2)) for a bit-parallel implemen-
tation and linearly (O(n)) for a bit-aerial one. Such serial based computational tetilques were
therefore exploited in the design of the neurons. A schematic representation of a bit-serial neuron
is shown in Figure 4. Each of the 16 neurons in the chip areldtecture is a duplicate of the same
structure.

The multiplier shown in Figure 4, is used to perform the synaptic multiplications. The driving
precision constraints for the misfire problem called for the use of a 16x16 blt fixed-point multiplier.
In operation, the multiplier accepts as input either an input stimulus to the neural network, or an
activation output from a neuron on a previous layer. It multiplies this quantity by the corresponding
synaptic weight. The input stimulus (or activation output) is presented to the multiplier in a bit-
parallel fashion, while the synaptic weights are presented in a bit-serial fashion. The serial output
of the multiplier feeds dlrectl y into an accumulator.

The multiplier shown in Figure 5, is a modified and improved version of previously reported serial
multiplier. Any size multiplier can be formed by cascading the basic multiplier cell. The lit-wise
multiplication of the multiplier and multiplicand is performed by the AND gates. At each clock
cycle, the bank of AND gates compute the partial product term of the multiplier Y[15:O] and the
serial multiplicand X(t). Two’s complement multiplication is achicvcd by using XOR gates on the
outputs of the AND gates. By controlling one of the inputs of the XOR gate, the finite state machhc
FSM can form the two’s complement of selected terms based on its control flow. In general, for an
nxn multiplier (resulting in a 2rzbit product), the multiplier can be formed by using 2n basic cells
and will perform the multiplication in 2n + 2 clock cycles. Successive operations can bc pipclined
and the latency of the LSB of the product is n + 2 clock cycles.

The accumulator, shown in Figure 6, is ELISOof a bit-serial design. It is extremely compact as it
consists of a single bit-serial adder linked to a chain of data registers. The length of the accumulator
chain is governed by the multiplication length. The multiplier takes 2n + 2 clock cycles to perform
a complete nxn multiplication. At each clock cycle, the accumulator sums the bit from the input
data stream with both the current contents of the data register on the circular chain as well as any
carry bits that might have been generated from the addkion in the previous clock cycle. This value
is subsequently stored onto the chain on the next clock cycle. Thk creates a circulating chain of
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Figure 6: Bit-serial accumulator of length n.

data b~ts in the accumulator with period 2n + 2.

5 Performance & Summary

A novel fixed-point bit-serial recurrent neuroproceasor chip has been designed and fabricated. This
digital stand-alone ASIC was designed as a co-processor chip to the host engine computer CPU. It is
capable of sequentially executing multiple neural based diagnostic and control applications bet wecn
engine events. The filp was successfully deployed and field tested on a number of diagnostic and
control problems including – the engine misfire detection problem – in a production Fonl Grand
Marquis automobile.

The neuroprocessor design was implemented using HP’s 0.5 pm CMOS design rules. The first
generation chip measured 8mm2 in size. For extreme design compactness, the chip made extensive
use of a variety of design techniques; including intra-layer parallelism, inter-layer multiplexing, and
fixed-point bit-serial based computational techniques. Flexibility of the design was achieved by
allowing the architecture to be on-th~fly programmable from RAM. The intra-layer architecture of
the neuroprocessor was organized in a SIMD configuration. To accomodatc both bipolar sigmoids
as well as excitatory and inhibitory synaptic weights, fixed point two’s complement arithmetic was
used .

The current design operates at a conservative 20 MHz clock speed. A neural application can be
loaded into the hardware in under 1 p s. Because of the SIMD architecture, it takes 1.6 ps to
simultaneously perform 16 multiply and accumulate operations. This translates into an effective
computational throughput of 0.1 ps per MAC operation. For the engine misfire 4- 15R-7R- 1 tc~pology,
the entire diagnostic classification was performed in under 80 ps. The next generation processor will
operate at 50 MHz with all timmings scaling inversely proportionally.
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